Qu	Scheme	Marks	AO
1 (a)	[p = 1 - (0.2 + 0.2 + 0.1 + 0.2)] = 0.3	B1	1.1b
(b)	A and C are mutually exclusive. [NOT $P(A)$ and $P(C)$]	(1) B1 (1)	1.2
		(2 marks)	-
	Notes	()	
(a)	B1 for		
(b)	B1 for A and C [NB $A \cap C$ or $A \cap C = \emptyset$ is B0] If more than one case given they must <u>all</u> be correct e.g. $A \cap B$ and C		

Qu	Scheme	Marks	AO
2	Must end up with 3 of each colour or 4 of each colour	M1	3.1b
	<u>n</u> = 2 requires 1 st red and 2 nd green <u>or</u> red from A and green from B	M1	2.2a
	P(1 st red and 2 nd green) = $\frac{4}{9} \times \frac{1}{10} = \frac{4}{90}$ or $\frac{2}{45}$ $p = \frac{2}{45}$	A1	1.1b
	<u>n = 5</u> requires 1 st green and 2 nd yellow <u>or</u> green from A and yellow from B	M1	2.2a
	P(1 st green and 2 nd yellow) = $\frac{1}{12} \times \frac{1}{10} = \frac{1}{120}$ or $\frac{1}{8}$ $p = \frac{1}{8}$	A1	1.1b
		(5)	
		(5 marks)	
	Notes		
	1 st M1 for an overall strategy realising there are 2 options.		
	Award when evidence of both cases (3 of each colour or 4 of each colour) seen.		
	2^{nd} M1 for $n = 2$ and attempt at 1^{st} red and 2^{nd} green		
	May be implied by e.g. $\frac{4}{9} \times \frac{1}{9}$		
	1 st A1 for $p = \frac{2}{45}$ or exact equivalent		
	3^{rd} M1 for $n = 5$ and attempt at 1^{st} green and 2^{nd} yellow		
	May be implied by e.g. $\frac{5}{12} \times \frac{3}{9}$		
	$2^{nd} A1$ for $p = \frac{1}{\underline{8}}$ or exact equivalent		
NB	If both correct values of p are found and then added (get $\frac{61}{360}$), deduct final A1 only (i.e. 4/5)		
	Greg At	twood 23 rd	Oct 2021

Qu	Scheme	Mark	AO		
3. (a)	[D = number of bags that are damp] $D \sim B(35, 0.08)$ NB $0.08 = \frac{2}{25}$	M1	3.3		
(i)	P(D=2) = 0.2430497 awrt <u>0.243</u>	A1	3.4		
(ii)	$P(D > 3) = [1 - P(D_{,, 3}) = 1 - 0.69397] = 0.30602 awrt 0.306$	A1	1.1b		
		(3)			
(b)	$H_0: p = 0.08$ $H_1: p < 0.08$	B1	2.5		
	$[X \sim] B(70, 0.08)$	M1	2.1		
	[P(X, 2)] = 0.0739756 awrt <u>0.074</u>	A1	1.1b		
	[0.074 < 0.10 so significant, reject H ₀ so]				
	there is evidence to support supplier <u>B's claim</u> (o.e.)	A1	2.2b		
		(4)			
	(7 marks)				
(a)	M1 for selecting a correct model: sight of or use of B(35, 0,08) [Condor	ne B(0.08	35)]		
(u)	May be implied by one correct answer or sight of $P(D_{1,3}) = awrt 0.69$	94 (or allo), 55)])W		
	0.693)				
	or seeing $\binom{35}{0.08^2} \times (1-0.08)^{35-2}$				
	$\underline{\mathbf{G}}$ seeing $\begin{pmatrix} 2 \end{pmatrix}$ seeing $\begin{pmatrix} 2 \end{pmatrix}$ see $(1 - 0.00)$				
	Saying B(35, 8%) without a correct calculation would score M0				
(i) (ii)	1 st A1 for awrt 0.243 2^{nd} A1 for awrt 0.206 (Condona poor use of notation e.g. $P(D = 3) = 0.306$	i a just r	nork one)		
(II) NR	P(D 3) = 0.539 scores 2^{nd} A0 but would of course score M1	I.C. Just I	nark ans)		
(b)	B1 for both hypotheses correct in terms of p or π [Condone 8% for 0.08]	3]			
	M1 for sight or correct use of $B(70, 0.08)$ [Condone $B(0.08, 70)$]	-			
	May be implied by prob of 0.074 or better				
	1 st A1 for final answer awrt 0.074 can condone poor notation e.g. $P(X = 2) = awrt 0.074$				
	Can allow this mark for CR of X, 2 provided $[P(X, 2)] = 0.074$ (or better) is seen				
	[Can allow 0.07 if $X \sim B(70, 0.08)$ and $P(X, 2)$ are both seen]				
	2^{nd} A1 (dep on M1A1 but independent of hypotheses) for a correct inference	e in conte	ext		
	Must mention <u>claim</u> or <u>B</u> and idea of <u>support for</u>				
	2^{nd} A0 for contradictory statements e.g. "accept H ₀ so evidence to su	pport B's	s claim"		
	2^{nd} A0 if you see 0.0739 < 0.08 so significant/ reject H ₀ etc	11			
MK	U.8 IOF U.U8 In (a) allow M1 for B(35, 0.8) then $\Delta 0 \Delta 0$				
	In (a) allow B1 for Hypotheses and M1 for B(70, 0.8) seen, then A0A	.0			

Qu	Scheme	Mark	AO	
4. (a)(i)	Require $R = 3$ and $G = 4$ so probability is $\frac{3}{4} \times \frac{1}{3}$	M1	2.1	
	$=\frac{1}{4}$ or <u>0.25</u>	A1	1.1b	
(ii)	[<i>R</i> must be 2 and <i>G</i> = 1 so $\frac{1}{4} \times \frac{2}{3}$] = $\frac{1}{6}$	A1	1.1b	
(b)	P(Y = 50) = 0.25 must mean $P = 3$ and $C = 4$	(3)	2 1 0	
(0)	F(x - 50) = 0.25 must mean $x - 5$ and $G = 4so 3m + 4n = 50$	A1	3.1a 1.1b	
	$P(X = 20) = \frac{1}{6} \implies R = 2, G = 1$ so $2m + n = 20$	A1	2.1	
	Solving: $3m + 4(20 - 2m) = 50$ (o.e.)	M1	1.1b	
	$\underline{m=6}$ and $\underline{n=8}$	A1	3.2a	
		(5) (8 marks	3	
	Notes	(o mur k	·)	
(a)(i)	M1 for sight of $\frac{3}{4} \times \frac{1}{2}$ or $\frac{1}{4} \times \frac{2}{2}$ as a single product BUT allow e.g. $\frac{3}{4} \times \frac{1}{3} + \frac{1}{3} \times \frac{3}{4}$ to score M1			
	However if the products are later added e.g. $\frac{3}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{2}{3}$ it is M0			
	May be implied by one correct answer to (i) or (ii)			
	A1 for $\frac{1}{4}$ or 0.25 or exact equivalent (allow 25%)			
(ii)	A1 for $\frac{4}{6}$ or exact equivalent			
(b)	For the 1 st 4 marks condone incorrect labelling e.g. <i>R</i> for <i>m</i> or <i>G</i> for <i>n</i> if intention is clear 1 st M1 for identifying either set of cases ($R = 2$, $G = 1$, $X = 20$) or ($R = 3$, $G = 4$, $X = 50$) Allow 1 st M1 for P($X = 20$) = $\frac{1}{4} \times \frac{2}{3}$ or P($X = 50$) = $\frac{3}{4} \times \frac{1}{3}$ NOT just P($X = 20$) = $\frac{1}{6}$ etc			
	or $\frac{1}{4}m + \frac{2}{3}n = 20$ or $\frac{3}{4}m + \frac{1}{3}n = 50$ and might score 2 nd M1 (answer is	m = 64, n =	= 6)	
	<u>or</u> $\frac{1}{4}m + \frac{2}{3}n = \frac{1}{6}$ or $\frac{3}{4}m + \frac{1}{3}n = \frac{1}{4}$ and might score 2^{nd} M1 (answer is $m = \frac{4}{15}$, $n = \frac{3}{20}$)			
	or $2m + n = \frac{1}{6}$ or $3m + 4n = \frac{1}{4}$ and might score 2^{nd} M1 (answer is $m = \frac{1}{12}$, $n = 0$)			
	or $2m + n = 50$ and $3m + 4n = 20$ and might score 2^{nd} M1 (answer is $m = 36$, $n = -22$)			
	1^{st} A1 for one correct equation 2^{nd} A1 for both correct equations and no incorrect equations, unless they attend	npt to solv	e the	
Calc	2^{nd} M1 for attempt to solve <u>their</u> two linear equations in <i>m</i> and <i>n</i> (reduce to an variable, condone one sign error). May be implied by $m = 6$ and $n = 8$. If they use one of the 4 sets of equations for 1^{st} M1 and use a calculato the answer, we will allow this mark for sight of the correct answers to as given above.	equation i r to write c those equa	n one lown tions	
	3^{rd} A1 $m = 6$ and $n = 8$ only (no incorrect labelling here) Correct answer by trial can score 5/5 if no incorrect working seen.			

Que.	Scheme		AOs		
5(a)	45 - 25 = 20 or e.g. '25 ,, $13 + 12 + y$,, 45 '	M1	2.1		
	12 " <i>x</i> " 32	A1	1.1b		
		(2)			
(b)	To be independent $P(A) \times P(M) = P(A \text{ and } M)$	M1	1.1a		
	$P(M) = \frac{P(A \text{ and } M)}{P(A)} = \frac{\frac{12}{45}}{\frac{25}{45}} = \frac{12}{25} \text{ or } \frac{25}{45} \times P(M) = \frac{12}{45}$ $25 \times x = 12 \text{ or } 25 \times 12 + y = 12$	A1	2.1		
	$\underline{\text{or}} \qquad \overline{45} \times \overline{45} = \overline{45} \underline{\text{or}} \qquad \overline{45} \times \overline{45} = \overline{45}$				
	The number of students taking part in music would be $\frac{12}{25} \times 45 = 21.6$ y = 9.6 The number of students taking part in music but not art would be	A1	1.1b		
	so it is not possible for <i>A</i> and <i>M</i> to be independent (since it must be a whole number).	A1	2.2a		
		(4)			
(6 marks)					
	Notes				
(a)	M1: for attempting to find range for x or attempt to find the largest/smallest number of students that could study Music only May be implied by one correct end point. Also may be implied with 20 given as an end point A_{12} and a_{22} and a_{22}				
	$12 \le r \le 32$ or $r = 12$ or $r = 32$ or $r = 12$ $r = 32$ all score	M1A0			
	M1: writing the definition of independence, must use A and M				
	MI: writing the definition of independence, must use A and M				
	Allow all three probabilities labelled followed by a correct equatic	n/definitio	n		
	P(A) = $\frac{25}{12}$, P(A and M) = $\frac{12}{12}$, P(M) = $\frac{x}{12}$ or $\frac{12+y}{12}$		11		
	45 45 45 45 45	1			
(b)	A1: $P(M) = 0.48$ oe or correct equation for $P(M)$, or x or y (allow Denote award this mark if working with sumbars a $p(A)$ and M	any letter	tor y)		
	Do not award this mark if working with numbers e.g. $P(A \text{ and } M) = 12$				
	21.6 oe (also allow $\frac{21.6}{45}$) or 9.6 oe				
	A1: (dependent on all previous marks being scored) correct deduc working. Ignore any reference to the range of values found in part	tion from (a).	correct		
SC:	If M0 scored, allow access to 1 st and 2 nd A1 (to score maximum M	[0A1A1A0))		

6(a) .	$\begin{aligned} \overline{X} &= 0, 1, 2 \text{ only} \\ [P(X = 0) =] \frac{6}{8} \times \frac{5}{7} \times \frac{4}{6} \\ [P(X = 1) =] 3 \times \frac{2}{8} \times \frac{6}{7} \times \frac{5}{6} \text{ or} \\ [P(X = 2) =] 3 \times \frac{2}{8} \times \frac{1}{7} \times \frac{6}{6} \\ \hline \hline \\ \hline \\ \hline \\ P(X = x) & \frac{5}{14} & \frac{15}{28} & \frac{3}{28} \\ \hline \\ \hline \\ \overline{J} \sim B(10, \frac{1}{9}) \end{aligned}$	B1 M1 M1 A1 A1	3.1b 1.1b 2.1 1.1b 1.1b		
(b) .	$[P(X = 0) =]\frac{6}{8} \times \frac{5}{7} \times \frac{4}{6}$ $[P(X = 1) =]3 \times \frac{2}{8} \times \frac{6}{7} \times \frac{5}{6} \text{ or}$ $[P(X = 2) =]3 \times \frac{2}{8} \times \frac{1}{7} \times \frac{6}{6}$ $\boxed{\begin{array}{c c} x & 0 & 1 & 2 \\ \hline P(X = x) & \frac{5}{14} & \frac{15}{28} & \frac{3}{28} \\ \hline J \sim B(10, \frac{1}{9}) \end{array}}$	M1 M1 A1 A1	1.1b 2.1 1.1b 1.1b		
(b) .	$[P(X = 1) =]3 \times \frac{2}{8} \times \frac{6}{7} \times \frac{5}{6} \text{ or}$ $[P(X = 2) =]3 \times \frac{2}{8} \times \frac{1}{7} \times \frac{6}{6}$ $\boxed{\begin{array}{c c} x & 0 & 1 & 2 \\ \hline P(X = x) & \frac{5}{14} & \frac{15}{28} & \frac{3}{28} \\ \hline J \sim B(10, \frac{1}{9}) \end{array}}$	M1 A1 A1	2.1 1.1b 1.1b		
(b) .	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A1 A1	1.1b 1.1b		
(b) .	P(X = x) $\frac{5}{14}$ $\frac{15}{28}$ $\frac{3}{28}$ J ~ B(10, $\frac{1}{9}$)	A1	1.1b		
(b) .	$J \sim B(10, \frac{1}{9})$				
(b) .	$J \sim B(10, \frac{1}{9})$	(5)			
_		M1	3.1b		
	P(J4) = 1 - P(J, 3) or P(J4) = P(J=4) + P(J=5) + + P(J=10) or 1 - 0.981(57)	M1	3.4		
	= awrt 0.0184	A1	1.1b		
-		(3)			
I	(8 marks)				
	Notes				
] 1	B1: identifying that <i>X</i> can only take on the values 0, 1 and 2 (may tree diagram). If other values stated, they must be associated with M1: correct expression for $P(X = 0)$	be seen at a probabili	end of ty of 0.		
]	M1: correct expression for either $P(X = 1)$ or $P(X = 2)$				
(a)	A1: one correct probability				
	Watch out for $\frac{6}{8} \times \frac{5}{7} = \frac{15}{28}$ which is an incorrect attempt at P(X = 0) and score	s M0A0		
	A1: complete probability distribution, need not be in a table, but e be associated with its probability.	ach value c	of x must		
1					
	Allow awrt 0.357, awrt 0.536, awrt 0.107				
]	Allow awrt 0.357, awrt 0.536, awrt 0.107 M1: identifying that the B(inomial) distribution with $n = 10$ is app	ropriate he	re.		
]	Allow awrt 0.357, awrt 0.536, awrt 0.107 M1: identifying that the B(inomial) distribution with $n = 10$ is app If distribution not stated, may be implied by use of $(10Cr)p^r(1-p)$	propriate he $(p)^{10-r}$ or 0.98	ere. 81(57)		
(b)	Allow awrt 0.357, awrt 0.536, awrt 0.107 M1: identifying that the B(inomial) distribution with $n = 10$ is app If distribution not stated, may be implied by use of $(10Cr)p^r(1-p)$ M1: writing or using a correct probability statement A1: awrt 0.0184	propriate he p^{10-r} or 0.98	re. 81(57)		
(a)	M1: correct expression for $P(X = 0)$ M1: correct expression for either $P(X = 1)$ or $P(X = 2)$ A1: one correct probability Watch out for $\frac{6}{8} \times \frac{5}{7} = \frac{15}{28}$ which is an incorrect attempt at $P(X = 0$ A1: complete probability distribution, need not be in a table, but e be associated with its probability.) and score ach value c	s of		

Qu 7	Scheme			AO
(a)	Disadvantage: e.g. Not random; cannot use (re	liably) for inferences	B1	1.1b
			(1)	
(b)	[Sight or correct use of] $X \sim B(36, 0.08)$			3.3
(i)	P(X = 4) = 0.16/38/ awrt <u>0.16/</u>			1.1b
(11)	$\left[P(X \ge 7) = 1 - P(X \le 6) = \right] $	0.022233 awrt <u>0.0222</u>	A1	1.1b
			(3)	
(c)	P(In dance club and dance tango) = 0.4×0.08 =	$= 0.032 \text{ or } \frac{4}{125} \text{ or } 3.2\%$	B1	1.1b
			(1)	
(d)	[Let $T =$ those who can dance the Tango. Sight or use of] $T \sim B(50, "0.032")$			3.3
	$[P(T < 3) = P(T \le 2) =] 0.7850815$	awrt <u>0.785</u>	A1	1.1b
				arks)
	Notes			
(a)	BI for a suitable disadvantage:			
	Allow (B1)	DO NOT allow	7 (BU)	
	Cannot use (reliably) for inferences	Less accurate		
	(More likely to be) biased Any comment based on time or cost			
	Any mention of skew			
	Any mention of non-response			
(b)	M1 for sight of B(36, 0.08) Allow in words: <u>binomial</u> with <u>$n = 36$</u> and <u>$p = 0.08$</u>			
	may be implied by one correct answer to 2sf or sight of $P(X \le 6) = 0.97776$ i.e. awrt 0.98			wrt 0.98
	Allow for $36C4 \times 0.08^4 \times 0.92^{32}$ as this is "co	prrect use"	1 51 1 1	
	1 st A1 for awrt 0.167 NB An answer of just awrt 0.167 scores $M1(\Rightarrow)1^{st} A1$			
(11)	2 AT 101 awrt 0.0222			
(c)	B1 for 0.032 o.e. (Can allow for sight of 0.4×0	0.08)		
(d)	M1 for sight of B(50, "0.032") ft their answer to (c) provided it is a probability ≠ 0.08 may be implied by correct answer			
	<u>or</u> signt of $[P(T \le 3)] = 0.9243481.e. awrt$	0.924 or $P(T \leq 2)$ as part of	$1 - P(T \leq$	2) calc.
MR	A1 for awrt 0.785 Allow MR of 50 (e.g. 30) provided clearly	v attempting $P(T \leq 2)$ and sc	ore M1A0	

PMT

Qu 8	Scheme	Marks	AO		
(a)	[Sum of probs = 1 implies] $\log_{36} a + \log_{36} b + \log_{36} c = 1$	M1	3.1a		
	$\Rightarrow \log_{36}(abc) = 1$ so $abc = 36$	A1	3.4		
	All probabilities greater than 0 implies each of a, b and $c > 1$	B1	2.2a		
	$36 = 2^2 \times 3^2$ (or 3 numbers that multiply to give 36 e.g. 2, 2, 9 etc.)	dM1	2.1		
	Since a, b and c are distinct must be $2, 3, 6$ $(a = 2, b = 3, c = 6)$	A1	3.2a		
(-)		(5)			
(b)	$(\log_{36} a)^2 + (\log_{36} b)^2 + (\log_{36} c)^2$	M1	3.4		
	[= 0.0374137+ 0.09398737+0.25]				
	= 0.38140 awrt <u>0.381</u>	A1	1.1b		
		(2)			
		(7 mark	c)		
	Notes	(/ mai k	8)		
(a)	1 st M1 for a start to the problem using sum of probabilities leading to eq'n	n <i>a</i> , <i>b</i> and	с		
	1^{st} A1 for reducing to the equation $abc = 36$ [Must follow from their equation]				
NB	Can go straight from $abc = 36$ to the answer for full marks for part (a)				
	B1 for deducing that each value > 1 (may be implied by 3 integers all > 1 in the next line)				
	$2^{nd} dM1$ (dep on M1A1) for writing 36 as a product of prime factors or				
	2 a values with product = 36 and none = 1				
	2^{nd} A1 for 2, 3 and 6 as a list or $a = 2, b = 3$ and $c = 6$				
SC	M0M0 If no method marks scored but a correct answer given score: M0A0E	B1M0A1 (2	2/5)		
Ans only	This gets the SC score of 2/5 [Question says show your working cl	early]			
(L)	M1 for a comparing in terms of the data and the former in the second sec				
(D)	1011 101 a correct expression in terms of <i>a</i> , <i>b</i> and <i>c</i> or values; it their intege	rs <i>a</i> , <i>b</i> and	С		
	A1 for awrt 0.381				

Que	estion	Scheme	Marks	AOs
9	(a)	$\frac{365}{1025}$ or $\frac{1}{5}$ or 0.2 oe	B1	1.1b
			(1)	
(h)		170 34		
	(0)	$\frac{176}{1825}$ or $\frac{54}{365}$ or awrt 0.093	B1	1.1b
			(1)	
(c)		$90 \times 0.4 + 80 \times 0.05 = 40$ or $90 \times 0.6 + 80 \times 0.95 = 130$ or		0.11
		$740 \times 0.65[=481]$ or $740 \times 0.35[=259]$	MI	3.1b
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1 A1	1.1b 1.1b 1.1b
			(4)	
(d)		$P(P' \cap E) = \frac{380}{208} \begin{bmatrix} 76 \\ -0.208 \end{bmatrix}$ or awrt 0.208	D1	1 1 1 1 1 1 1 1 1
		$\Gamma(K+T) = \frac{1}{1825} \left[-\frac{3}{365} - 0.208 \right] 00$		1.10
(a)			(1)	
(€)		$\left[\frac{133 + 130^{\circ}}{1825} = \right]\frac{263^{\circ}}{1825} $ awrt 0.144	B1ft	1.1b
			(1)	
(f)		247+"481"	M1	3.4
		247 + "481"+123 + "40"		
		$=\frac{728}{801}$ awrt 0.817	A1	1.1b
		891	(2)	
		Notes:	(10 n	narks)
		Look out for answers given in the question. If you see answers in th	e questior	1 and
		in the answer space those in the answer space take precedence.		
(a)	B1	Allow equivalent		
(b)	BI	Allow equivalent		
(c)	M 1	Correct method to find one of the values 40 or 130 or 481or 259 Implied by 40, 481, 259 or 130 seen in correct place on diagram		
	B1	One of the highlighted correct		
	B1	A second value highlighted correct or their $("259"+"481") = 740 \text{ or}$		
		their $("40"+" 481") = 521$ or their $("40"+"130") = 170$		
	A 1	their $(40^{\circ} + 481^{\circ}) = 521$ or their $(40^{\circ} + 130^{\circ}) = 1/0$		
(d)	D1	380/1825ce. or awrt 0.208		
		Correct on our on		
(e)	BII	Correct answer or Et their 130 ($>$ 0) do not allow if blank		
		Allow ft correct to 3 sf.		
(f)	<u>л</u> л1	For a single fraction with the numerator < denominator and <i>n</i> is an interval	eger we wi	ill
<u>(I)</u>		award for $n/891$ or $n/(\text{sum of their 4 values in } H, \text{ each } > 0)$ or awrt ().817	
	A1	728/891 oe or awrt 0.817		

Qu 10	Scheme	Marks	AO	
(a)	[0.13 + 0.25 =] <u>0.38</u>	B1	1.1b	
	In dan an dan as investigas	(1)		
(0)	Independence implies: $a \propto \begin{bmatrix} P(P \cap C) - P(P) \times P(C) & \rightarrow \end{bmatrix} = 0.3 - (0.3 + 0.05 + 0.25) \times (0.3 + n)$	M1	1.1b	
	$C.g. \left[\Gamma(B \cap C) - \Gamma(B) \times \Gamma(C) \right] \rightarrow 0.3 - (0.3 + 0.03 + 0.23) \times (0.3 + p)$	A 1	1 11	
	[Sum of probabilities = 1 gives] $a = 0.07$	AI B1ft	1.10 1.1b	
		(3)		
(c)	$P(A B') = \frac{P(A \cap B')}{P(A \cap B')}$ or	M1	1.1b	
	P(B') = P(B') or $(0.13 + "0.2" + "0.07")$	1 v1 1		
	12			
	$=\frac{13}{40}$ or 0.325	A1	1.1b	
		(2) (6 m	arks)	
	Notes	(•		
(a)	B1 for 0.38 (or exact equivalent)			
	If answers are given on Venn Diagram <u>and</u> in the script then the script takes precedence.			
	M1 for a correct equation in p or $P(C)$ only			
(0)	May be implied by an answer of $p = 0.2$ provided this does not come from incorrect			
	working.			
	Condone missing brackets if they get 0.2 Other rules for independence will give simple rearrangements of this	austion		
	Other rules for independence will give simple rearrangements of this equation.			
Beware	If $p = 0.2$ comes from incorrect working, we've seen $p = \frac{0.6}{0.3} = 0.2$, see	ore M0A0		
	A1 for $p = 0.2$ (or exact equivalent) B1ft for $p = 0.07$ (or exact equivalent) for their $p = 0.27$ (0.27) 1 $p = 0.27$			
	Bit for $q = 0.07$ (of exact equivalent) it then p i.e. $q = 0.27 = 0.2$ when	co,, p,,	0.27	
(c)	M1 for a correct ratio of probability expressions <u>or</u> a correct ratio of prob ft their values of n and <i>a</i> (provided both probabilities), or letters n and	abilities		
	A1 for 0.325 or exact equivalent. Correct answer only will score $2/2$	9		
	NB on epen this is labelled M1 but treat it as A1			